Один из ведущих экспертов в этой области Джеффри Хинтон из Университета Торонто отмечает, что технология углубленного обучения «отлично поддается масштабированию. Просто сделайте ее больше и быстрее, и она будет лучше работать». Другими словами, даже если оставить в стороне совершенствование принципов работы таких сетей, можно с уверенность утверждать, что системы машинного обучения на основе сетей со способностью к углубленному обучению ждет этап стремительного роста — этот простой вывод следует из закона Мура.
По мере того как работодатели — и в особенности большие корпорации — все больше и больше усиливают контроль над режимом работы и социальными связями своих сотрудников, постоянно расширяя круг отслеживаемых показателей и параметров, большие данные и используемые для их обработки сложные алгоритмы начинают напрямую влиять на условия работы и карьерный рост сотрудников. Так называемая «аналитика трудовых ресурсов» (people analytics) играет все большую роль при принятии компаниями решений о найме, увольнении, оценке результативности и повышении сотрудников. Объем собираемых данных о конкретных людях и о выполняемой ими работе поражает воображение. Некоторые компании контролируют каждое нажатие клавиши каждым сотрудником. Сообщения электронной почты, расшифровки телефонных разговоров, поисковые запросы, обращение к базам данным, доступ к файлам, нахождение на территории работодателя — все эти, а также другие данные самых разных видов, точное количество которых даже трудно определить, подлежат сбору и анализу (в одних случаях с согласия самих сотрудников, а в других — без их ведома). Разумеется, изначально целью сбора и анализа всех этих данных являются повышение эффективности управления и оценка результатов работы сотрудников. Но в определенный момент эти данные могут быть использованы совсем для других целей: например, для разработки ПО, автоматизирующего большую часть выполняемой работы.
Если говорить о последствиях революции в области больших данных для будущего профессий, связанных с умственным трудом, вероятно, стоит выделить два самых главных. Во-первых, во многих случаях собранных данных может оказаться достаточно для автоматизации конкретных задач и даже целых видов профессиональной деятельности. Подобно тому, как человек может научиться новой профессии, изучив опыт предшественников и опробовав его на практике при решении конкретных задач, современные сложные алгоритмы, по сути, способны проделать то же самое и полностью заменить человека. Чтобы убедиться в этом, достаточно вспомнить, что в ноябре 2013 г. компания Google подала заявку на регистрацию патента, описывающего систему, предназначенную для автоматического создания персонализированных сообщений электронной почты и ответов в социальных сетях. Принцип работы системы таков: сначала она анализирует существующие письма и посты в социальных сетях определенного человека. Основываясь на полученных знаниях, она затем автоматически пишет ответы на новые сообщения электронной почты, сообщения в Twitter и посты в блоге, используя при этом характерные для данного человека индивидуальный стиль и манеру письма. Легко представить, как такая система может быть использована в будущем для автоматизации существенной части повседневного общения.
Еще одним примером, указывающим на наиболее вероятное направление дальнейшей эволюции технологий автоматизации с использованием больших данных, являются роботы-автомобили компании Google, впервые представленные в 2011 г. Инженеры Google сразу отказались от идеи создания робота, который бы мог заменить человека за рулем обычного автомобиля, — это в любом случае было бы за пределами возможностей современных технологий искусственного интеллекта. Вместо этого они упростили задачу, спроектировав высокопроизводительную систему обработки данных и поставив ее на колеса. Автомобили Google перемещаются в пространстве, опираясь на точные данные о местоположении, определяемом с помощью GPS в сочетании с огромным объемом чрезвычайно подробных картографических данных. Разумеется, автомобили также оснащены радарами, лазерными дальномерами и иными системами, обеспечивающими непрерывный поток актуальных данных и помогающими машинам адаптироваться к изменению условий и новым ситуациям, таким, например, как выход пешехода на проезжую часть. Причислять водителей к белым воротничкам, конечно, никто не будет, но использованная Google общая стратегия может быть легко применена во множестве других областей. Сначала берется огромный массив исторических данных, на основе которого создается общая «карта», и затем эта «карта» используется специальными алгоритмами при выполнении рутинных задач. Следующий шаг — в игру вступают самообучающиеся системы, которые способны адаптироваться к отклонениям от алгоритма и непрогнозируемым ситуациям. В результате получаем интеллектуальное ПО, которое может качественно выполнять многие виды работ, связанные с умственным трудом.
Во-вторых, пожалуй, более важным последствием внедрения технологий обработки больших данных для работников умственного труда станут изменения в работе организаций и методах управления ими. Большие данные и алгоритмы прогнозирования могут полностью изменить сам характер умственного труда и количество связанных с ним рабочих мест в организациях во всех отраслях. Прогностическая информация, которая может быть получена из данных, будет все чаще использоваться в качестве замены таким человеческим качествам, как опыт и способность суждения. А по мере перехода управленцев к принятию решений на основе результатов обработки данных с помощью автоматизированных средств потребность в обширной аналитической и управленческой инфраструктуре с привлечением значительных людских ресурсов будет неуклонно снижаться. Таким образом, там, где сегодня требуется целая команда аналитиков, которые собирают информацию и доводят результаты анализа до сведения руководителей разного уровня, в будущем будет достаточно одного управленца с мощным алгоритмом. Структура организаций, вероятно, будет упрощаться. Необходимость в руководителях среднего звена отпадет, а рабочие места для квалифицированных аналитиков просто-напросто исчезнут, так как большинство связанных с анализом задач смогут выполнять обычные сотрудники.