Готов поручиться, что в ближайшие годы и десятилетия почти всем нам предстоит столкнуться с поражающими воображение проявлениями прогресса. И речь не только о технических новинках как таковых: влияние набирающего обороты прогресса на рынок труда и на экономику в целом вот-вот перерастет в нечто такое, что не укладывается в общепринятые представления о взаимодействии технологий и экономических процессов.
Одно из мнений, которое наверняка подвергнется пересмотру, это мнение о том, что автоматизация главным образом угрожает малоквалифицированным работникам с низким уровнем образования. Это допущение исходит из убеждения, что такая работа обычно носит рутинный характер. Однако вместо того, чтобы успокаивать себя этой мыслью, задумайтесь, насколько быстро расширяются пределы понятия «рутина». Когда-то «рутинной» называли работу на конвейере. В наше время это уже далеко не так. Разумеется, профессии, не требующие особой квалификации, по-прежнему относятся к «рутинным», но при этом, учитывая, как быстро растут возможности ПО для автоматизации и алгоритмов прогнозирования, огромному количеству белых воротничков с высшим образованием предстоит столкнуться с той же проблемой.
На самом деле прилагательное «рутинный» не совсем подходит для описания профессий, являющихся наиболее вероятной жертвой новых технологий. Более точным представляется другое прилагательное — «предсказуемый». Может ли другой человек научиться тому, что вы делаете в рамках своих должностных обязанностей, подробно изучив описание ваших действий? Можно ли освоить ваше ремесло, повторяя за вами те задачи, работу над которыми вы уже завершили, подобно тому, как при подготовке к экзамену учащийся выполняет практические задания? Если это так, то вполне вероятно, что однажды появится алгоритм, который сможет научиться делать всю работу — или значительную ее часть — за вас. Причем вероятность именно такого развития событий многократно увеличивается по мере все более глубокого проникновения в нашу жизнь такого феномена, как «большие данные»: организации собирают невообразимое количество информации практически обо всех аспектах своей деятельности, и с большой долей вероятности можно утверждать, что эти данные включают подробные сведения об огромном количестве профессиональных навыков и операций. Так что остается лишь дождаться дня, когда появится изощренный алгоритм машинного обучения, который, углубившись в оставленные предшественниками-людьми цифровые следы, сам всему научится.
Из этого следует вывод, что, скорее всего, от автоматизации в будущем не спасет ни получение дополнительного образования, ни освоение новых навыков. Взять, к примеру, рентгенологов — врачей, специализирующихся на интерпретации рентгеновских снимков. Чтобы стать специалистом в этой области, нужно очень долго учиться: обычно на освоение этой профессии уходит не меньше тринадцати лет. Однако компьютеры стремительными темпами догоняют человека в способности анализировать снимки. Так что уже сейчас можно легко представить будущее — причем достаточно близкое будущее, — в котором практически всю работу за рентгенологов делают машины.
Таким образом, уже совсем скоро компьютеры научатся легко и быстро осваивать новые навыки, особенно в тех случаях, когда у них будет доступ к большому объему данных для обучения. В первую очередь под ударом окажутся позиции начального уровня. О том, что это уже происходит, свидетельствует ряд данных. В частности, в последние десять лет наблюдается снижение реальных зарплат выпускников колледжей. При этом 50 % из них вынуждены браться за работу, не требующую высшего образования. Более того, как я собираюсь показать в этой книге, развитие информационных технологий уже привело к ощутимому сокращению возможностей для трудоустройства даже высококвалифицированных профессионалов во многих областях, включая юриспруденцию, журналистику, науку и фармацевтику. Та же судьба ждет и остальных: большинство видов профессиональной деятельности так или иначе связано с рутиной и являются предсказуемыми, тогда как людей, которым в первую очередь платят за по-настоящему творческую работу и инновационную деятельность, относительно немного.
Как только машины возьмутся за эту рутинную, предсказуемую работу, люди, которые выполняют ее сейчас, столкнутся с беспрецедентными трудностями при попытке адаптироваться к новым реалиям. В прошлом технологии автоматизации, как правило, были достаточно узкоспециализированными, лишая будущего какой-то один сектор рынка труда за раз, благодаря чему у занятых в нем работников была возможность перейти в нарождающиеся отрасли. Сейчас ситуация совсем иная. Информационные технологии становятся по-настоящему универсальными, и их влияние будет ощущаться одинаково сильно во всех сферах. Велика вероятность того, что по мере внедрения новых технологий в бизнес-модели практически во всех существующих отраслях будет наблюдаться снижение потребности в труде человека — и снижаться она будет очень быстро. В то же время можно не сомневаться, что в новых отраслях, которые появятся в будущем, с самого момента их рождения будут активно использоваться все последние достижения из мира технологий с целью экономии расходов на персонал. Например, такие компании, как Google и Facebook, стали частью жизни всех и каждого и добились космического роста капитализации, используя труд совсем небольшого — относительно их размера и влияния — числа людей. Есть все основания полагать, что подавляющее большинство новых отраслей в будущем будет создаваться и развиваться по аналогичному сценарию.